Effect of Supplemental Trace Minerals on Standard and Novel Measures of Bull Fertility

T. W. Geary – a2, R. C. Waterman – a, M. L. Van Emon – b, C. R. Ratzburg – c, S. Lake – c, B. A. Eik – a, D. R. Armstrong – a, A. L. Zezeski – a, and J. S. Heldt – d

aUSDA-ARS, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301; bDepartment of Animal and Range Sciences, Montana State University, Bozeman, MT 59717; cDepartment of Animal Sciences, University of Wyoming, Laramie, WY; dMicronutrients USA LLC, 2601 Fortune Circle Drive E. Suite 200C, Indianapolis, IN 46241


Two studies were conducted to evaluate the effects of trace mineral supplementation on traditional and novel measures of bull fertility. In experiment 1, 37 mature bulls received one of three dietary supplements daily for 71 d: 1) Supplement without Cu, Zn, and Mn (CON); 2) Supplement with Cu, Zn, and Mn sulfate (SULF); and 3) Supplement with basic Cu chloride, and Zn and Mn hydroxychloride (CHLR). In experiment 2, 128 Angus or Angus-Hereford calves were maintained on a growing diet for 75 d (year 1) or 119 d (year 2) in Calan gate equipped pens without mineral supplementation. Bulls (n = 32 head/treatment) received one of four trace mineral supplements daily for 84 d: 1) Zn with no Cu (ZN), 2) Cu with no Zn (CU), 3) Cu and Zn (ZNCU), or 4) no Cu or Zn (CON). Fertility measures included a breeding soundness examination (BSE) and novel fertility measures conducted using flow cytometry. In mature bulls, final liver Zn concentration was positively correlated (P = 0.02) with sperm concentration (r = 0.31) and tended (P = 0.06) to be negatively correlated with acrosome damage (r = -0.39). Peripubertal bulls receiving ZNCU had greater ADG than CU bulls (P = 0.05). Each BSE and novel fertility component improved from d 0 to 84 in peripubertal bulls and were not affected (P > 0.10) by mineral supplementation. Bulls that received no supplement (CON) had greater (P < 0.01) percentage of sperm with distal midpiece reflex and Dag defect in their ejaculates. Sperm viability after 30 min of incubation were not affected by trace mineral supplementation, but after 3 h incubation, sperm viability tended to differ (P = 0.06) between treatments and tended to be less for CON bulls compared to ZNCU bulls. Among contrast comparisons, trace mineral supplemented bulls had greater (P < 0.05) percentage of viable sperm at 3 h post collection and reactive oxygen resistant sperm than CON bulls. Addition of Zn to trace mineral containing Cu (ZNCU) improved (P < 0.05) percentage of sperm in the ejaculate with high mitochondrial energy potential and viable sperm with intact acrosome membrane. In summary, it appears the homeostasis mechanisms for bull trace mineral maintenance are extremely efficient and mineral supplementation of mature and peripubertal bulls did not have major improvements in any laboratory or chute-side measures of bull fertility, however bulls exposed to breeding or in environments with diet antagonists might respond differently.

 © 2021 - A Closer Look